Contact Us: 1-855-875-6841 (North America) | 1-647-201-5499 (International) - [ 8.30 am - 4.30 pm EST ]|


Photobiomodulation 2018-05-04T17:19:29+00:00

Section I


La photobiologie est l’étude des effets des rayonnements non ionisants sur les systèmes biologiques. L’effet biologique varie selon la région de longueur d’onde du rayonnement. Le rayonnement est absorbé par des molécules dans la peau telles que l’ADN, des protéines ou de certains médicaments. Les molécules sont modifiées chimiquement dans les produits biochimiques qui déclenchent des réponses dans les cellules.

La réaction biologique à la lumière n’a rien de nouveau. Il existe de nombreux exemples de réactions photochimiques (à la lumière) induites de lumière induite dans les systèmes biologiques. Nous éprouvons normalement cette réaction à travers notre oeil qui est évidemment photosensibles. Notre vision est basée sur la lumière frappent nos rétines et la création d’une réaction chimique qui nous permet de voir. La synthèse de la vitamine D dans notre peau est un autre exemple d’une réaction photochimique. Lorsque l’ultraviolet B (UVB) longueur d’onde dans la lumière du soleil frappe notre peau, il convertit une forme universellement présente du cholestérol, 7-déhydrocholestérol en vitamine D3. Tout au long de l’évolution de cette dernière, les photons ont joué un rôle vital dans certaines cellules photo-chimiquement énergisantes.


La photobiomodulation au niveau cellulaire, l’énergie rouge et le proche visible de la lumière infrarouge stimulent les cellules pour produire plus d’énergie et réalisent une auto-réparation. Chaque cellule possède des mitochondries, qui fonctionnent pour la production d’énergie cellulaire appelée « ATP ». Ce processus de production implique la chaîne respiratoire. Une enzyme mitochondriale appelée cytochrome oxydase c accepte alors l’énergie photonique lorsqu’elle ne fonctionne pas de façon optimale.


  • NO (Nitric Oxide)
  • ROS (Reactive Oxygen Series) → PKD (gene) → IkB (Inhibitor κB) + NF-κB (nuclear factor κB) → NF-κB (nuclear factor κB stimulates gene transcription)
  • ATP (Adenosine Triphosphate) → cAMP (catabolite activator protein) → Jun/Fos (oncogenic transcription factors) → AP-1 (activator protein transcription factor stimulates gene transcription


The current widely accepted proposal is that low level visible red to near infrared light energy is absorbed by mitochondria and converted into ATP for cellular use. In addition, the process creates mild oxidants (ROS) that leads to gene transcription and then to cellular repair and healing. The process also unclogs the chain that has been clogged by nitric oxide (NO).[1]  The nitric oxide is then released back into the system. Nitric oxide is a molecule that our body produces to help its 50 trillion cells communicate with each other by transmitting signals throughout the entire body. Additionally, nitric oxide helps to dilate the blood vessels and improve blood circulation.

Photobiomodulation mechanisms

Section II


• The correct wavelength for the target cells or chromophores must be employed (633-810 nm). If the wavelength is incorrect, optimum absorption will not occur and as the first law of photobiology states, the Grotthus-Draper law, without absorption there can be no reaction.[2]• The photon intensity, i.e., spectral irradiance or power density (W/cm2), must be adequate, or once again absorption of the photons will not be sufficient to achieve the desired result. If the intensity is too high, however, the photon energy will be transformed to excessive heat in the target tissue, and that is undesirable.[3]• Finally, the dose or fluence must also be adequate (J/cm2), but if the power density is too low, then prolonging the irradiation time to achieve the ideal energy density or dose will most likely not give an adequate final result, because the Bunsen-Roscoe law of reciprocity, the 2nd law of photobiology, does not hold true for low incident power densities.[4]

Section III

Brain Bioenergetics

Near-infrared light stimulates mitochondrial respiration in neurons by donating photons that are absorbed by cytochrome oxidase, a bioenergetics process called photoneuromodulation in nervous tissue.[5]The absorption of luminous energy by the enzyme results in increased brain cytochrome oxidase enzymatic activity and oxygen consumption. Since the enzymatic reaction catalyzed by cytochrome oxidase is the reduction of oxygen to water, acceleration of cytochrome oxidase catalytic activity directly causes an increase in cellular oxygen consumption. [6]Increased oxygen consumption by nerve cells is coupled to oxidative phosphorylation, ATP production increases as a consequence of the metabolic action of near-infrared light. This type of luminous energy can enter brain mitochondria transcranially, and—independently of the electrons derived from food substrates—it can directly photostimulate cytochrome oxidase activity.[7]

Section IV


[1] – “Biphasic Dose Response in Low Level Light Therapy”; Sulbha K. Sharma (PhD), Ying-Ying Huang (MD), James Carroll, Michael R. Hamblin (PhD)

[2, 3, 4] – “Is light-emitting diode phototherapy (LED-LLLT) really effective?”; Won-Serk Kim (PhD, MD), R Glen Calderhead (PhD)

[5, 6, 7] – “Augmentation of cognitive brain functions with transcranial infrared light”; Francisco Gonzalez-Lima (PhD), Douglas W Barrett (MD)


Mechanisms of Brain Photobiomodulation

“Low-energy photon irradiation in the near-IR spectral range with low-energy lasers or LEDs positively modulates various important biological processes in cell culture and animal models. Photobiomodulation is applied clinically in the treatment of soft tissue injuries and accelerated wound healing. The mechanism of photobiomodulation by red to near-IR light at the cellular level has been ascribed by research institutions to the activation of cellular mitochondrial respiratory chain components, resulting in a signaling cascade that promotes cellular proliferation and cytoprotection.

Research indicates that cytochrome c oxidase is a key photo-acceptor of irradiation in the far-red to near-IR spectral range. Cytochrome c oxidase is an integral membrane protein that contains multiple redox active metal centers and has a strong absorbency in the far-red to near-IR spectral range detectable in-vivo by near-IR spectroscopy.

Additionally, photobiomodulation increases the rate of electron transfer in purified cytochrome oxidase, increasing mitochondrial respiration and ATP synthesis in isolated mitochondria, and up-regulating cytochrome oxidase activity in cultured neuronal cells – leading to neuroprotective effects and neuronal function.

In addition to increased oxidative metabolism, red to near-IR light stimulation of mitochondrial electron transfer is known to increase the generation of reactive oxygen species (ROS). ROS functions as signaling molecules, providing communication between mitochondria and the nucleus.”[1]

[1] – Proc Natl Acad Sci U S A. 2003 Mar 18; 100(6): 3439–3444.